Пример №353 из задания 2

Даны векторы \overrightarrow{a}(-1; 2\sqrt{6}) и \overrightarrow{b}(1; 2\sqrt{6}). Найдите косинус угла между ними.


Решение

Скалярное произведение векторов равняется произведению их длин на косинус угла между ними:

\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{|a|} \cdot \overrightarrow{|b|} \cdot \cos \alpha.

Выведем косинус угла между векторами:

\displaystyle \cos \alpha=\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{|a|} \cdot \overrightarrow{|b|}}.

В числителе у нас получилось скалярное произведение в координатах, а в знаменателе произведение длин векторов.

Скалярное произведение двух векторов \overrightarrow{a}(x_1; y_1) и \overrightarrow{b}(x_2; y_2) равняется \overrightarrow{a} \cdot \overrightarrow{b}=x_1 x_2 + y_1 y_2.

Найдем скалярное произведение:

\overrightarrow{a} \cdot \overrightarrow{b}=-1 \cdot 1+ 2\sqrt{6} \cdot 2\sqrt{6}=-1+24=23.

Длина вектора \overrightarrow{a} (x;y) вычисляется по формуле |\overrightarrow{a}|=\sqrt{x^2+y^2}.

Найдем произведение длин векторов:

|\overrightarrow{a}| \cdot |\overrightarrow{b}|=\sqrt{(-1)^2+ (2\sqrt{6})^2} \cdot \sqrt{1^2+\sqrt{6}^2}=\sqrt{25} \cdot \sqrt{25}=\sqrt{625}=25.

Найдем косинус угла между векторами:

\displaystyle \cos \alpha=\frac{23}{25}=0,92.

Ответ: 0,92.


Источник: Открытый банк задач ЕГЭ по математике (Задание №509819)

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x