Пример №39 из задания 20

Решите уравнение (x-1)(x^2+6x+9)=5(x+3).


Решение

Воспользуемся формулой квадрата суммы (a+b)^2=a^2+2ab+b^2.

(x-1)(x^2+6x+9)=5(x+3);

(x-1)(x+3)^2=5(x+3);

(x-1)(x+3)^2-5(x+3)=0;

(x+3)((x-1)(x+3)-5)=0;

(x+3)(x^2+3x-x-3-5)=0;

(x+3)(x^2+2x-8)=0;

Произведение равно нулю, если x+3=0 или x^2+2x-8=0.

x_1+3=0;

x_1=-3.

ИЛИ

x^2+2x-8=0;

D=4-4 \cdot 1 \cdot (-8)=4+32=36;

\displaystyle x_2=\frac{-2-6}{2}=-4;

\displaystyle x_3=\frac{-2+6}{2}=2.

Ответ: -3,-4,2.


Источник: ОГЭ 2025. Математика. 50 вариантов. Типовые варианты экзаменационных заданий от разработчиков ОГЭ. Ященко И. В. (вариант 8)

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x