Пример №15 из задания 6

Найдите значение выражения \displaystyle \frac{2^{\log_9 3}}{2^{\log_9 243}}.


Решение

Применим следующие свойства \displaystyle \frac{a^b}{a^c}=a^{b-c}.

\displaystyle 2^{\log_9 3-\log_9 243}=2^{\log_9 \frac{3}{243}}=2^{\log_9 \frac{1}{81}}=2^{\log_9 9^{-2}}=2^{-2}=0,25.

Ответ: 0,25.


Источник: ЕГЭ 2023 Математика. Профильный уровень. Типовые экзаменационные варианты. 36 вариантов (вариант 15) (Купить книгу)

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x