Пример №1 из задания 19

Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.


Решение

Напишем все варианты трех цифр, сумма которых равна 20:

Первый вариант – 9+9+2, второй – 9+8+3, третий 9+7+4, четвертый – 9+6+5, пятый – 8+6+6, шестой – 7+7+6, седьмой – 8+8+4, восьмой – 8+7+5.

Определим кратность суммы квадратов цифр на 3 каждого варианта:

Первый \displaystyle \frac{9^2+9^2+2^2}{3}=\frac{166}{3} – не делится.

Второй \displaystyle \frac{9^2+8^2+3^2}{3}=\frac{154}{3} – не делится.

Третий \displaystyle \frac{9^2+7^2+4^2}{3}=\frac{146}{3} – не делится.

Четвертый \displaystyle \frac{9^2+6^2+5^2}{3}=\frac{142}{3} – не делится.

Пятый \displaystyle \frac{8^2+6^2+6^2}{3}=\frac{136}{3} – не делится.

Шестой \displaystyle \frac{7^2+7^2+6^2}{3}=\frac{134}{3} – не делится.

Седьмой \displaystyle \frac{8^2+8^2+4^2}{3}=\frac{144}{3}=48 – делится.

Восьмой \displaystyle \frac{8^2+7^2+5^2}{3}=\frac{138}{3}=46 – делится.

Получилось в седьмом и в восьмом варианте сумма квадратов цифр делится на 3. Определим, делится ли данная сумма квадратов на 96

Седьмой \displaystyle \frac{8^2+8^2+4^2}{9}=\frac{144}{9}=16 – делится, значит, условию не удовлетворяет.

Восьмой \displaystyle \frac{8^2+7^2+5^2}{3}=\frac{138}{9} – не делится, значит, условию уловлетворяет.

Получается, что трехзначное число должно состоять из цифр 8, 7, 5. Например, число 875.

Ответ: 875.


Источник: Демоверсия ЕГЭ по математике 2024. Базовый уровень (Задание 19. Пример 1)

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
0
Оставьте комментарий! Напишите, что думаете по поводу статьи.x