maryzharikova
Опубликовано 6 лет назад по предмету Математика от maryzharikova

В комнате находятся 100 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт, причём все они разного роста. Каждый из находящихся в комнате сказал ровно одну из двух фраз: Хотя бы 5 лжецов ниже меня; Хотя бы 5 лжецов выше меня. Какое наименьшее число рыцарей может быть в комнате?

  1. Ответ
    Ответ дан Artem112
    Пусть в комнате 1 рыцарь и, соответственно, 99 лжецов. Пусть лжецы выстроены в порядке возрастания роста: z₁, z₂, z₃, ..., z₉₉. Рассмотрим, для каких лжецов какая фраза будет истинной или ложной. <<Не менее 5 лжецов ниже меня>>: Для первых пяти лжецов z₁-z₅ эта фраза действительно ложь, так как слева от них стоит меньше 5 человек. Для остальных лжецов слева стоит хотя бы 5 лжецов, и соврать таким образом они не могут. <<Не менее 5 лжецов выше меня>>: Напротив, эта фраза ложна для последних пяти лжецов z₉₅-z₉₉, так как справа от них стоит меньше 5 человек. Для остальных лжецов справа стоит хотя бы 5 лжецов, и, сказав эту фразу, они не соврут. Таким образом, соврать смогли лишь 10 лжецов: первые пять человек и последние пять человек (с наименьшим и наибольшим ростом). Это наибольшее число лжецов, которое может быть в этой ситуации. Именно оно обеспечивает наименьшее число рыцарей, которых будет 100-10=90. Ответ: 90
Не тот ответ, который вам нужен?
Найди нужный
Задай вопрос